
A PRACTICAL EXPERIENCE WITH INDEPENDENT VERIFICATION AND VALIDATION

Gerald Page', Frank E. McGarry.., and David N. Card.

Computer Sciences Corporation, Silver Spring, Maryland 20910
National Aeronautics and Space Administration, Greenbelt, Maryland 20771

ABSTRACT

One approach to reducing software cost and in-
creasing reliability is the use of an independent
Verification and validation (IVLV) methodology.
The Software Engineering Laboratory (SEL) applied
the IVLV methodology to two medium-sized flight
dynamics software development projects. Then, to
measure the effectiveness of the IVLV approach,
the SEL colapared these two projects with two simi-
lar past projects, using measures like productiv-
ity, reliability, and maintainability. Results
indicated that the use of the IVLV methodology did
not help the overall process nor improve the prod-
uct in these cases.

Independent verification and validation (IVSV) is
the systematic evaluation of software by an inde-
pendent organization, i.e., not the development
organization. During the software development
process, the IVLV team-provides an objective ap-
praisal of the development process and product to

Detect problems earlier and consequently solve
them earlier

Ensure that all defined requirements are
addressed at each development stage

Provide managers with better visibility of the
development process

These improvements should leaa to more reliable
-software with better cost and schedule contro1.l
However, the cost effectiveness of the IVLV meth-
odology, when compared to more traditional devel-
opment approaches, has not been fully demonstrated.

This paper describes an attempt to assess the
benefits and limitations of the application of
IVLV in one particular development environment.

SOPPWARE ENGINEERING LABORATORY

The environment of the IVLV experiment was the
National Aeronautics and Space Administration/

453

Goddard Space Flight Center's (NASA/GSFC's) flight
dynamics area. There, software is developed for
such spacecraft problems as attitude determination
and control, mission planning, and maneuver con-
trol. This software development environment has
been studied for 7 years by the Software Engineer-
ing Laboratory* (SEL), a research project spon-
sored by NASA/GSPC and supported by the Computer
Sciences Department at the University of Maryland
and by Computer Sciences Corporation.

The SEL's goals are to understand and improve the
overall software development process.
end, the SEL conducts experiments with.production
software projects and measures the effect of the
techniques applied, identifying and adopting bene-
ficial methodologies for future projects.

During the past 7 years, the SEL has studied more
than 45 software development projects totaling
more than 2 million lines of source code. Most
flight dynamics projects are developed on a group
of IBH mainframe computers using FORTRAN and as-
sembler programming languages. The applications
projects monitored by the SEL are largely scien-
tific and mathematical in nature with moderate
reliability requirements but with severe develop-
ment time constraints that are imposed by a fixed
spacecraft launch date. The development process
typically takes between 18 and 24 months from the
beginning of preliminary design to the end of
software acceptance testing. Depending on mission
characteristics, the size of a system ranges from
30,000 to 120,000 lines of source code, with an
average of 30 percent reused from previous similar
projects .
A n IVhV methodology was applied to two typical
flight dynamics development projects in an attempt
to determine the benefits of the approach. Each
project was in development €or 2 years and was
approximately 65,000 lines of source code in size.

To this

THE IVLV METHODOLOGY

The major functions o€ an IVSV team are (1) to
ensure that the product of each phase of the soft-
ware life cycle is consistent with the product of
the previous phase (i.e., verification) and (2) to
ensure that the product of each phase accurately
responds to the original software requirements

0730-3 l57/ 84/ ooOO/O453SO I .OO @ 1984 IEEE
3-54

(i.e., validation). The benefits of using this
methodology are claimed to be

Earlier detection of errors
Increased software reliability
Improved software maintainability

The additional product review activities of the
IVbV team, especially in the early life cycle
phases, should produce more complete and earlier
error detection, as.well as a more easily main-
tained product. Increased visibility and reduced
cost are potential secondary benefits. The IVCV
team provides an independent and impartial assess-
ment of project status, thus increasing its visi-
bility to management. Life cycle cost is reduced
if fewer errors are propagated through to main-
tenance and operations,. especially in environments
where maintenance is a large part of the total
life cycle cost. In addition, the system develop-
ment cost should be reduced by earlier error de-
tection and correction.

A study3 of large TRW, GTE, and IBM software
development projects suggests that the difficulty
of correcting an error increases the longer the
error remains in the system. Figure 1 (from that
study) shows that the cost of correcting an error
doubles for each life cycle phase that it remains
in the system. Data collected.by the Software
Engineering Laboratory (SEL) support the existence
of a trend of increasing cost. By finding errors
soon after they enter the system, the IVbV team
should reduce the cost of subsequent error cor-
rection during development.

IVbV lVbV PAST
1- 2. 1

CHARACTERISTICS

/

PAST
2

I #

94

4.9

7.2

5 12 t 0 18

81

5.3

5.9

/
PHASE WWERC ERROR DETECTEO

Figure 1. Cost of Correcting Software
Errors (TRW, GTE, IBM Data3)

THE IVhV EXPERIMENT

The goal of this study4 was to determine which
of the potential benefits (previously described)
would be obtained by applying the IVLV method-
ology to flight dynamics projects. To p.rform
this evaluation, the SEL developrd an IVLV,plan
and applied it to two typical attitude projects.
The reaults of these projects **..I. rorap.red to the
results of t m previous attitude projects (that

did not use IVbV) with respect to'seven perform-
ance measures.

PROJECTS STUDIED

Each of the experimental projects was initially
estimated to require 5 to 7 staff-years of effort
to produce approximately 55,000 lines of source
code, exclusive of the IVbV effort. The IVhV team
was expected to expend an additional 15 percent of
the development team's effort.

The two past projects with which the IVhV projects
were compared actually required 9.1 and 9.2 staff-
years of effort to produce 85,000 and 90,000 lines
of source code, respectively. These projects were
completed and operational in 1979. Both IVhV
projects were completed and operational in 1981.
All four projects were developed on the same IBM
mainframe computers in FORTRAN. Table 1 describes
some other characteristics of the projects.

Table 1. Characteristics of Projects Studied

I I PROJECTS

SIZE ITHOUSANDS OF DELIV-
ERED UNES OF SOURCE CODE)
-rr--.. I C - . - - ..,..l-..C, c r run I I* I -.Tr-RIuI. I n*r

DURATION IWEEKS)

AVERAGE STAFF IFULL-TIME
EQUIVALENT)

APPLICATION EXPERIENCE
(AVERAGE YEARS)

68

,,e 2.0

ea
5.2

6.2

w

2.2

70

6.1

7 .0

'EXCLUDES lVbV TEAM

Data were collected both manually and automatically
from all four projects during and after develop-
ment. Errors detected and hours charged were re-
ported on forms filled out by the development and
IVCV teams. These data were quality assured and
stored in a computer data base for easy retrieval.

FWCI"CTONS OF THE IVbV TEAM

The SEL developed an IVbV plan based on the rele-
vant software engineering literature. An IVhV
team was selected and trained to

. Validate requirements to ensure completeness
and correctness

Verify design to ensure that it is a complete
and correct translation of the requirements

Perform independent system testinq to ensure
that the software satisfies the requirements

Verify consistency from cequirements to soft-
ware to operation

Fix nothinp

Report all discrepancies and other findings

The application and overall experience of the IVbV
technical staff was similar to that of the average

454

3-55

development team: the managers, however, had more
experience. The IVhV team shared resources with
developers and operations personnel.
team was expected to use about 15 percent of the
development resources to perform these functions.

The IVhV

PERFORMANCE MEASURE

OPERATIONAL RELIABILITY [ERRORS PER
KSLOCI

MAINTENANCE COST [STAFF-HOURS PER
ERROR1

REOUIREMENTS SPECIFICATION IERRORS
PER KSLOCI

SYSTEM DESIGN [ERRORS PER KSLOCI

ACCEPTANCE TESTING [ERRORS PER KSLOCI

TESTING EFFORT 1%)

OEVELOPMENT COST [STAFF-MONTHS PER
KSLOCI

PERFORMANCE MEASURES

lV&V PAST
PROJECTS PROJECTS

0.9 0.6

14 13

0.8 0.5

2.1 2.2

1.9 1 9

34 38

2.2 1.4

One approach6 to assessing the benefit of using
an IVhV team is to count the number of faults
found by the team, to determine the probable cost
of those errors had they become latent errors
through later :tages of the life cycle, and, from
this, to compute a dollar benefit of using the
team. This procedure ignores the possibility that
some (perhaps all) of the faults found by IVhV
might have been found by the development team in
the absence of the IVhV team.

The approach adopted by the SEL was to define
relevant performance measures and then to compare
the overall performance of a development team
working with an IVhV team to the performance of a
development team working alone.
seven measures were defined, covering every phase
of the software life cycle:

The following

Operational Reliability--Errors discovered
during operation per thousand lines of source
code developed

Maintenance Cost--Effort (staff-hours) per
error corrected during maintenance

Requirements Specification Quality--Errors per
thousand lines of source code (found during
code and test) that were attributed to the
requirements specification

System Design Quality--Errors per thousand
lines of source code (found during code and
test) that were attributed to the system design

Software Implementation Quality--Errors per
thousand lines of source code detected during
acceptance testing

Testing Effort--Percent of development effort
required for system and acceptance testing

Development Cost--Effort (staff-months) per
thousand lines of source code developed

These measures indicate the degree to which earlier
error detection was achieved, reliability was in-
creased, and maintainability was improved (the
purported benefits of IVhV). Values of these
measures for two IVSV-assisted projects were com-
pared with values from two similar (but non-IVhV)
past projects. This enabled the overall effec-
tiveness of the IVhV methodology to be evaluated
as well as its effect on each life cycle phase.

EXPERIMENTAL RESULTS

The IVhV process for the experimental projects
lasted 14 to 16 months and required an additional
effort of 16 to 18 percent of the development
effort (close to the initial 15 percent esti-

mate). IVCV staffing averaged 1.1 persons and
peaked at 3.0 persons (full-time equivalents).
Six different individuals were involved in the
IVhV team, including technical managers.

Both development teams expended 9.8 staff-years Of
effort. One project produced 66,000 and the other
67,000 lines of source code. Both size and cost
substantially exceeded the initial estimates.
Table 2 shows the values obtained for the seven
performance measures from the IVhV and past
projects.

The following sections discuss the performance
results obtained from the experiment in more de-
tail.

OPERATIONAL RELIABILITY

The additional testing and verification effort
provided by the IVhV team should increase the
operational reliability of the delivered soft-
ware. However, the error rates achieved by the
two IVCV projects were greater than the error
rates for the two past projects. The average
error rate for the two past projects was 0.6 error
per thousand lines of developed code: both IVCV
projects had higher error rates (_an average of
0.9).
improve the quality of the software put into
operation.

The use of an IVSV methodology did not

MAINTENANCE COST

Early detection of errors by the IVCV team should
reduce the cost of correcting errors during main-
tenance. That is, relatively few requirements,
design, or serious coding errors should remain in
the system when it enters the maintenance and
operations phase. Those errors found should be
trivial and few. However, the average effort re-
quired to correct an error (during maintenance)
for the IVCV projects (14 hours) was about the
same as that for the non-IVhV projects (13 hours).
Given that the operational reliability of the IVCV
projects was not any better, the relative mainte-
nance cost of the IVCV projects was greater than
that of the non-IVCV projects.

455

3-56

REQUIREplENTS SPECIFICATION QUALITY

One effect of an IVLV team should be to reduce the
number of requirements errors that are propagated
through to the coding phase, yet the requirements
error rates for the IVCV and non-IVLV projects
were about equal (0.6 and 0.5 error per thousand
lines of source code, respectively). Rowever,
very few requirements remained unspecified in the
later stages of development. Hence, there were
very few late surprises in teras of requirements
problems as compared with the past projects.
use of an IVCV methodology did decrease the impact
of requirements errors, ambiguities, and misinter-
pretations. Nevertheless, becau8e requirements
errors are not a major problem in this environment
(few requirements errors occur), the effect on the
overall developent process was minor.

SYSTEM DESIGN QUALITY

Another effect of an IVLV team should be to reduce
the number of design errors that are propagated
through to the coding phase.
the design error rate for the IVCV projects (2.1
errors par thousand source lines of code) was
approximately equal to that of the past projects
(2.2 errors per thousand source lines of code).
The ase of an IVLV methodology did not produce any
reduction in design errors reaching coding.

The

In this experiment,

SOFIWARE IMPLEMENTATION QUALITY

The additional system testing and review performed
by the IVLV team should result in fewer develop-
ment errors being uncovered during acceptance
testing. Both IVLV and non-IVCV projects demon-
strated an acceptance testing error rate of 1.9
errors per thousand lines of source code. The use
of an IVLV methodology produced no change in the
reliability of the software entering acceptance
testing.

TESTING EFFORT

Early error discovery should facilitate system and
acceptance testing, thereby reducing the effort
required. Since testing can account for 40 per-
cent of the development cost in this environment,
there is the potential for substantial cost sav-
ings in this area. In this experiment, the IVLV
projects demonstrated only a marginal reduction in
the effort required for system and acceptance
testing relative to the past projects (from 35.9
to 34.3 percent).

DEVELOPMENT COST

It was expected that the cost of using the IVLV
methodology would be confined to the additional
cost of owrating the IVLV team. However, the two
IVcV projects (2.6 staff-months per thousand lines
of source code) were about 85 percent more
expensive than the twO past projects (1.4 staff-
months per thousand lines of source code). Since
the operational reliability of the software was
not any better, an 85-peccent increase in cost for
the same product is a very expensive penalty to
pay. The cost of the development part of the IVLV

projects alone (2.2 staff-months per thousand
lines of source code) was approximately 55 percent
higher than the past development cost. The cost
of using IVCV is high.

CONCLUSIONS AND RECOMMENDATIONS

In summary, the performance measures indicate that
the first application of an IVCV methodology in
the flight dynamics environment

Did- not produce a more reliable product
Did not detect errors earlier
Did not improve maintainability

The overall conclusion is that IVLV is not cost
effective for NASA/GSPC's flight dynamics proj-
ects, especially since other software techniques
have been shown to improve software qualit
this environment at little or no net cost.

Despite these results, it may be possible to
better integrate the IVLV methodology into the
software development process to make IVCV more
cost effective in the flight dynamics environment
for

4 in

The right sire effort
The right reliability requirement

Uost around-based flight dynamics prnjocts req~ire
8 2 4 staff-years of effort.
may be cost effective for larger projects. For
onboard (flight) systems with a more stringent
reliability requirement, an IVCV methodology may
be cost effective for 5- to 6-staff-year efforts.
In both these cases, an IVcV effort of approxi-
mately 15 percent of the development effort should
be sufficient in the flight dynamics environment.

Software developers should keep in mind, however,
that no software engineering methodology can re-
place technical and managerial expertise. It may
be best to regard IVCV as an insurance policy8:
an additional premium that should be paid when the
consequences of failure are great.

An IVcV methodology

REFERENCES

S. B. Mohanty, "On Software Verification 5
Validation,. Proceedinqs of the Software Veri-
fication and Validation Symposium, June 1981

Software Engineering Laboratory, SEL-81-104,
The Software Enqineerinq Laboratory,
D. N. Card, F. E. McGarry, G. Page, et al.,
February 1982

B. W. Boehm, "Software Engineering RCD Trends
and Defense Needs,' Research Directions in
Software Technolx. MIT Press:
Massachusetts. 1979

Software Engineering Laboratory, SEL-81-110,
Evaluation of an Independent Verification and
validation (IVCV) Methodoloqy for Pliqht
Dvnamics, G. Page and F. E. McGarry, to be
pub1 ished

456

3-57

5. Michael S. Dcutsch, 'Verification and Valida- 7. D. N. Card, P. E. McGarry, and G. Page, "Eval-
tion,. Software Enqineerinq. Prentice-Hall, uating Software Engineering Technologies in
Inc.: New Jersey, 1979 the SEL," Proceedings of the Eighth Annual

Software Engineering Workshoe, November 1983
6. M. S. Fujii, "Five Major IVLV Projects: A

Quantitative Analysis," Proceedings of the 8. J. B. Munson, "Acquisition Management Of
Software Verification and Validation S m s - - ium, June 1981

Embedded Computer Systems and the Role Of
IVLV," Proceedings of the Software Verifica-
tion and Validation Symposium, June 1981

. .

451

3-58

